浩晨众云网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引。分享给大家供大家参考,具体如下:
1、pandas缺失值处理
import numpy as np import pandas as pd from pandas import Series,DataFrame df3 = DataFrame([ ["Tom",np.nan,456.67,"M"], ["Merry",34,345.56,np.nan], [np.nan,np.nan,np.nan,np.nan], ["John",23,np.nan,"M"], ["Joe",18,385.12,"F"] ],columns = ["name","age","salary","gender"]) print(df3) print("=======判断NaN值=======") print(df3.isnull()) print("=======判断非NaN值=======") print(df3.notnull()) print("=======删除包含NaN值的行=======") print(df3.dropna()) print("=======删除全部为NaN值的行=======") print(df3.dropna(how="all")) df3.ix[2,0] = "Gerry" #修改第2行第0列的值 print(df3) print("=======删除包含NaN值的列=======") print(df3.dropna(axis=1))